Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 5735, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2293442

ABSTRACT

The COVID-19 pandemic has produced widespread behaviour changes that shifted how people split their time between different environments, altering health risks. Here, we report an update of North American activity patterns before and after pandemic onset, and implications to radioactive radon gas exposure, a leading cause of lung cancer. We surveyed 4009 Canadian households home to people of varied age, gender, employment, community, and income. Whilst overall time spent indoors remained unchanged, time in primary residence increased from 66.4 to 77% of life (+ 1062 h/y) after pandemic onset, increasing annual radiation doses from residential radon by 19.2% (0.97 mSv/y). Disproportionately greater changes were experienced by younger people in newer urban or suburban properties with more occupants, and/or those employed in managerial, administrative, or professional roles excluding medicine. Microinfluencer-based public health messaging stimulated health-seeking behaviour amongst highly impacted, younger groups by > 50%. This work supports re-evaluating environmental health risks modified by still-changing activity patterns.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , COVID-19 , Lung Neoplasms , Radon , Humans , Pandemics , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Canada/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Risk Assessment , COVID-19/epidemiology , COVID-19/complications , Radon/toxicity , Radon/analysis , Air Pollutants, Radioactive/analysis , Lung Neoplasms/epidemiology , Gases
2.
J Environ Radioact ; 257: 107076, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2232167

ABSTRACT

The air exchange rate (AER) is a critical parameter that governs the levels of exposure to indoor pollutants impacting occupants' health. It has been recognized as a crucial metric in spreading COVID-19 disease through airborne routes in shared indoor spaces. Assessing the AER in various human habitations is essential to combat such detrimental exposures. In this context, the development of techniques for the rapid determination of the AER has assumed importance. AER is generally determined using CO2 concentration decay data or other trace gas injection methods. We have developed a new method, referred to as the "222Rn incremented method", in which 222Rn from naturally available soil gas was injected into the workplace for a short duration (∼30 min), homogenized and the profile of decrease of 222Rn concentration was monitored for about 2 h to evaluate AER. The method was validated against the established 222Rn time-series method. After ascertaining the suitability of the method, several experiments were performed to measure the AER under different indoor conditions. The AER values, thus determined, varied in a wide range of 0.36-4.8 h-1 depending upon the ventilation rate. The potential advantages of the technique developed in this study over conventional methods are discussed.


Subject(s)
Air Pollution, Indoor , COVID-19 , Radiation Monitoring , Radon , Humans , Air Pollution, Indoor/analysis , Soil
3.
Environ Res ; 212(Pt D): 113437, 2022 09.
Article in English | MEDLINE | ID: covidwho-1851036

ABSTRACT

During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Radon , Air Pollutants/analysis , COVID-19/epidemiology , Humans , Pandemics , Particulate Matter/analysis , Radon/analysis , Romania/epidemiology , SARS-CoV-2 , Time Factors
4.
Int J Environ Res Public Health ; 19(6)2022 03 16.
Article in English | MEDLINE | ID: covidwho-1760588

ABSTRACT

Improving the energy efficiency of buildings is a major target in developed countries toward decreasing their energy consumption and CO2 emissions. To meet this target, a large number of countries have established energy codes that require buildings to be airtight. While such a retrofitting approach has improved health outcomes in areas with heavy traffic, it has worsened the health outcomes in Nordic countries and increased the risk of lung cancer in areas with high levels of radon emissions. This review highlights the importance of adapting the characteristics of energy-efficient residential buildings to the location, age, and health of inhabitants to guarantee healthy indoor pollutant levels. The implementation of mechanical ventilation in new energy-efficient buildings has solved some of these problems; however, for others, a decrease in the level of outdoor pollutants was still required in order to achieve a good indoor air quality. A good balance between the air exchange rate and the air humidity level (adapted to the location) is key to ensuring that exposure to the various pollutants that accumulate inside energy-efficient buildings is low enough to avoid affecting inhabitants' health. Evidence of the protective effect of mechanical ventilation should be sought in dwellings where natural ventilation allows pollutants to accumulate to threatening levels. More studies should be carried out in African and Asian countries, which, due to their rapid urbanization, use massive volumes of unproven/unrated building materials for fast-track construction, which are frequent sources of formaldehyde and VOC emissions.


Subject(s)
Air Pollution, Indoor , Environmental Pollutants , Radon , Air Pollution, Indoor/analysis , Housing , Radon/analysis , Respiration, Artificial , Ventilation
5.
Int J Environ Res Public Health ; 19(4)2022 02 10.
Article in English | MEDLINE | ID: covidwho-1715304

ABSTRACT

Considering the multitudes of people who spend their time working indoors in public premises and workplaces, it is worth knowing what their level of exposure is to natural radioactive radon gas, the second most widespread and dangerous carcinogen for lung cancer development after cigarette smoking. This state-level study covered most of the territory of Latvia and conducted 941 radon measurements with Radtrack2, placed for 4-6 months in the premises of public companies, educational institutions, medical care institutions, etc. The study found that 94.7% of samples did not exceed the national permissible limit (200 Bq/m3), the level at which preventive measures should be initiated. The median value of average specific radioactivity of radon in these premises was 48 Bq/m3 (Q1 and Q3 being 27 and 85 Bq/m3), which is below the average of the European region. Slightly higher concentrations were observed in well-insulated premises with plastic windows and poorer air exchange, mostly in schools (59 (36, 109) Bq/m3) and kindergartens (48 (32, 79) Bq/m3). Industrial workplaces had surprisingly low radon levels (28 (16, 55) Bq/m3) due to strict requirements for air quality and proper ventilation. Public premises and workplaces in Latvia mostly have low radon concentrations in the air, but more attention should be paid to adequate ventilation and air exchange.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Humans , Latvia , Radon/analysis , Workplace
6.
PLoS One ; 16(9): e0230700, 2021.
Article in English | MEDLINE | ID: covidwho-1430517

ABSTRACT

Weatherization of residential homes is a widespread procedure to retrofit older homes to improve the energy efficiency by reducing building leakage. Several studies have evaluated the effect of weatherization on indoor pollutants, such as formaldehyde, radon, and indoor particulates, but few studies have evaluated the effect of weatherization on indoor microbial exposure. Here, we monitored indoor pollutants and bacterial communities during reductions in building leakage for weatherized single-family residential homes in New York State and compared the data to non-weatherized homes. Nine weatherized and eleven non-weatherized single-family homes in Tompkins County, New York were sampled twice: before and after the weatherization procedures for case homes, and at least 3 months apart for control homes that were not weatherized. We found that weatherization efforts led to a significant increase in radon levels, a shift in indoor microbial community, and a warmer and less humid indoor environment. In addition, we found that changes in indoor airborne bacterial load after weatherization were more sensitive to shifts in season, whereas indoor radon levels were more sensitive to ventilation rates.


Subject(s)
Air Pollution, Indoor , Case-Control Studies , Environmental Exposure , Environmental Monitoring , Housing , Humans , Radon , Ventilation
7.
Int J Environ Res Public Health ; 18(3)2021 01 23.
Article in English | MEDLINE | ID: covidwho-1052503

ABSTRACT

In this study, to get a better understanding in characterizing groundwater and ensure its effective management, the radon concentrations in water samples were measured through Ryukyu limestone in southern Okinawa Island, Japan. Water samples were collected from a limestone cave (Gyokusendo cave, dropping water) and two springs (Ukinju and Komesu, spring water), and the radon concentrations were measured by liquid scintillation counters. The radon concentrations in the samples from the Gyokusendo cave, and Ukinju and Komesu springs were 10 ± 1.3 Bq L-1, 3.2 ± 1.0 Bq L-1, and 3.1 ± 1.1 Bq L-1, respectively. The radon concentrations showed a gradually increasing trend from summer to autumn and decreased during winter. The variation of radon concentrations in the dripping water sample from the Gyokusendo cave showed a lagged response to precipitation changes by approximately 2-3 months. The estimated radon concentrations in the dripping water sample were calculated with the measured radon concentrations from the dripping water obtained during the study period. Based on our results, groundwater in the Gyokusendo cave system was estimated to percolate through the Ryukyu limestone in 7-10 days, and the residence time of groundwater in the soil above Gyokusendo cave was estimated to be approximately 50-80 days. This work makes a valuable contribution to the understanding of groundwater processes in limestone aquifers, which is essential for ensuring groundwater sustainability.


Subject(s)
Groundwater , Radiation Monitoring , Radon , Water Pollutants, Radioactive , Islands , Japan , Radon/analysis , Water , Water Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL